skip to main content


Search for: All records

Creators/Authors contains: "Muscarella, Mario E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 10 0 to 10 5 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life. 
    more » « less
  2. null (Ed.)
    ABSTRACT Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions. 
    more » « less
  3. Abstract

    Microorganisms are strongly influenced by the bottom-up effects of resource supply. While many species respond to fluctuations in the concentration of resources, microbial diversity may also be affected by the heterogeneity of the resource pool, which often reflects a mixture of distinct molecules. To test this hypothesis, we examined resource–diversity relationships for bacterioplankton in a set of north temperate lakes that varied in their concentration and composition of dissolved organic matter (DOM), which is an important resource for heterotrophic bacteria. Using 16S rRNA transcript sequencing and ecosystem metabolomics, we documented strong relationships between bacterial alpha-diversity (richness and evenness) and the bulk concentration and the number of molecules in the DOM pool. Similarly, bacterial community beta-diversity was related to both DOM concentration and composition. However, in some lakes the relative abundance of resource generalists, which was inversely related to the DOM concentration, may have reduced the effect of DOM heterogeneity on community composition. Together, our results demonstrate the potential metabolic interactions between bacteria and organic matter and suggest that changes in organic matter composition may alter the structure and function of bacterial communities.

     
    more » « less
  4. Cameron Thrash, J. (Ed.)
    ABSTRACT Hydrologic changes modify microbial community structure and ecosystem functions, especially in wetland systems. Here, we present 24 metagenomes from a coastal freshwater wetland experiment in which we manipulated hydrologic conditions and plant presence. These wetland soil metagenomes will deepen our understanding of how hydrology and vegetation influence microbial functional diversity. 
    more » « less
  5. Summary

    Bacterial growth efficiency (BGE) is the proportion of assimilated carbon that is converted into biomass and reflects the balance between growth and energetic demands. Often measured as an aggregate property of the community, BGE is highly variable within and across ecosystems. To understand this variation, we first identified how species identity and resource type affect BGE using 20 bacterial isolates belonging to the phylum Proteobacteria that were enriched from north temperate lakes. Using a trait‐based approach that incorporated genomic and phenotypic information, we characterized the metabolism of each isolate and tested for predicted trade‐offs between growth rate and efficiency. A substantial amount of variation in BGE could be explained at broad (i.e., order, 20%) and fine (i.e., strain, 58%) taxonomic levels. While resource type was a relatively weak predictor across species, it explained >60% of the variation in BGE within a given species. A metabolic trade‐off (between maximum growth rate and efficiency) and genomic features revealed that BGE may be a species‐specific metabolic property. Our study suggests that genomic and phylogenetic information may help predict aggregate microbial community functions like BGE and the fate of carbon in ecosystems.

     
    more » « less
  6. Abstract

    The movement of organisms across habitat boundaries has important consequences for populations, communities, and ecosystems. However, because most species are not well adapted to all habitat types, dispersal into suboptimal habitats could induce physiological changes associated with persistence strategies that influence community assembly. For example, high rates of cross‐boundary dispersal are thought to maintain sink populations of terrestrial bacteria in aquatic habitats, but these bacteria may also persist by lowering their metabolic activity, introducing metabolic heterogeneity that buffers the population against species sorting. To differentiate between these assembly processes, we analyzed bacterial composition along a hydrological flow path from terrestrial soils through an aquatic reservoir by sequencing the active and total (active + inactive) portions of the community. When metabolic heterogeneity was ignored, our data were consistent with views that cross‐boundary dispersal is important for structuring aquatic bacterial communities. In contrast, we found evidence for strong species sorting in the active portion of the aquatic community, suggesting that dispersal may have a weaker effect than persistence strategies on aquatic community assembly. By accounting for metabolic heterogeneity in complex communities, our findings clarify the roles of local‐ and regional‐scale assembly processes in terrestrial‐aquatic meta‐ecosystems.

     
    more » « less